Sheathless Size-Based Acoustic Particle Separation

نویسندگان

  • Rasim Guldiken
  • Myeong Chan Jo
  • Nathan D. Gallant
  • Utkan Demirci
  • Jiang Zhe
چکیده

Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Particle Separation in the Fluid Flow in a Microchannel Including Spiral and Acoustic Regions

Particulate separation has many applications in medicine, biology and industry. In this research, the separation of polystyrene particles with a diameter of 10, 20 and 30 μm in the fluid flow of a microchannel is investigated. The microchannel consists of a spiral region and a straight region under the influence of acoustic waves. In the spiral region, the particles under hydrodynamic effects u...

متن کامل

Sheathless Dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid

School of Mechanical, Materials and M Wollongong, Wollongong, NSW 2522, Austra School of Mechanical Engineering, Nanjin Nanjing 210094, China. E-mail: junzhang@ Queensland Microand Nanotechnology C 4111, Australia School of Biological Sciences, University o Australia Illawarra Health and Medical Research Ins † Electronic supplementary informa 10.1039/c6ra25328h Cite this: RSC Adv., 2017, 7, 3461

متن کامل

High-throughput sheathless and three-dimensional microparticle focusing using a microchannel with arc-shaped groove arrays

Sheathless particle focusing which utilises the secondary flow with a high throughput has great potential for use in microfluidic applications. In this work, an innovative particle focusing method was proposed. This method makes use of a mechanism that takes advantage of secondary flow and inertial migration. The device was a straight channel with arrays of arc-shaped grooves on the top surface...

متن کامل

Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.

Particle focusing in planar geometries is essentially required in order to develop cost-effective lab-on-a-chips, such as cell counting and point-of-care (POC) devices. In this study, a novel method for sheathless particle focusing, called "Elasto-Inertial Particle Focusing", was demonstrated in a straight microchannel. The particles were notably aligned along the centerline of the straight cha...

متن کامل

Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012